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[9] H. S. Hewitt, ` Àcomputerdesigned 72Otolmicrowave compression Aug. 1969.
filter, ” IEEE Trans. Microwatw Theory Tech., VOI. MTT-15, pp. 687– [13] W.J. Getsinger, ``CoupIed rectangrrlar bars between parallel plates,''
694, Dec. 1967. IRE Trans. Microwave Theory Tech., vol. MTT-10, pp. 65–73,

[10] R. Sato’’A design method formeander-line networks using equiva- Jan. 1962.

lent circuit transformations, ” IEEE Trans. Microwave Theory Tech., [14] R. J. Wenzel, “Small elliptic-function low-pass filters and other

vol. MTT-19, pp. 431–442, May 1971.
[11] P. I. Richards,

applications of microwave C sections, ” IEEE TYans. Mitt’owavc

“Resistor transmission-line circuits, ” Proc. IRE, Tkeory Teck., vol. MTT-18, pp. 1150–1158, Dec. 1970.

vol. 36, pp. 217–220, Feb. 1948. [15] G. I. Zysman and A. Matsumoto, “PrOpertiesOf microwave C-sec-

[12] J. W. Bandler, “Optimization methods for computer-aided design, ” tions, ” IEEE Tram-. Circuit Theory, vol. CT-12, pp. 74-82, Mar.

IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp. 533–552, 1965.

Efficient Capacitance Calculations for Three-Dimensional

Mukiconductor Systems

ALBERT E. RUEHLI AND PIERCE A. BRENNAN

Abstract—The design and packaging of integrated circuits re-
quires the calculation of capacitances for three-dimensional con-
ductors located on parallel planes. An integral-equation (IE) com-
puter-solution technique is presented, which provides accurate
results. The solution tectilque minimizes computer storage require-
ments while maintaining calculating efficiency
computation times.

I. INTRODUCTION

~ N THE PAST, integral-equation (IE)

without excessive

techniques found

J extensive use in capacitance calculations for two-dimen-

sional geometries [1]- [7]. These solutions have proven

to be very useful for systems involving sets of long parallel

transmission lines (conductors) in a multidielectric environ-

ment. Further, for sufficiently high frequencies and TEM-

mode propagation, the characteristic impedance can be found

[8]. Thus all electrical paramet&s required for a complete

characterization of a set of low-loss transmission lines are

obtainable from the IE approach.

Three-dimensional capacitance calculations, however,

have been limited to small problems. The capacitance of an

infinitely thin square plate has been considered by several

authors [9 ]– [13 ], while the capacitance between parallel

plates [14] and for a cube has been found [15]. Recently,

solutions have been obtained for problems involving infinite

dielectric regions [16]- [18] by using Green’s function tech-

niques similar to those used in the two-dimensional calcula-
tions cited above.

The numerical solution of the IE leads to a matrix that

resembles the coefficients of potential for multiconductors. In

a two-dimensional analysis, the unknowns represent the sur-

face charge (on the boundary of a cross section), and are

therefore one dimensional. Approximately 30 unknowns lead

to a good solution for an average problem on a small computer

since the matrix requires only 900 words of storage.
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In contrast to this, the unknowns representing the surface

charge will be two dimensional when the IE approach is

applied to a three-dimensional capacitance problem. If the

above example is extended to this case, matrices larger than

1000 X1000 result, requiring excessive storage for a direct

matrix inversion. This presents a serious limitation to three-

dimensional calculations especially since the matrices are full.

The solutions introduced here considerably reduce storage

requirements for the matrix of coefficients without unduly

increasing computation complexity, allowing the treatment of

three-dimensional conductors on multiple planes.

In some situations, the presence of closely spaced ground

planes makes a two-dimensional description [1 ]– [7 ] possible,

and thus a transmission-line characterization suffices. How-

ever, if ground planes are remote or not present, three-dimen-

sional solutions become necessary’. Specifically, the use of par-

tial capacitances (defined later) in conjunction with partial

inductances [19] leads to a three-dimensional technique, and

partial-element equivalent circuits [20] result in a complete

characterization of three-dimensional interconnection struc-

tures.

In Section II, the formulation of the IE solution is devel-

oped, while Section III is devoted to the numerical solution.

In Section IV, the evaluation of the coefficient matrix is con-

sidered, and in Section V, Green’s functions for the inclusion

of infinite interfaces are considered. Important relations to

multicapacitance concepts are established in Section VI, while

comparisons with other results are made in Section VII.

II. INTEGRAL-EQUATION FORMULATION

A set of K conductors is considered with or without infinite

ground planes or with infinite dielectric regions present. The

potential @(?J at a field point ?i in the system is

(1)

where q is the charge density on the conductor surfaces sk and
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G is the appropriate Green’s function for the infinite interfaces

present. For a uniform infinite dielectric region surrounding

the conductors, G = GD where

(2)

e is the permittivity, and ?’ is the vector from the origin to the

source point. In this paper, all results are obtained with

l/4re0 = 0.0089876 pF/m, with eO being the perrnittivity of

air. Equations (1) and (2) represent a system of Fredholm

equations of the first kind with an integrable singular kernel

G.

For simplicity, the surfaces of the conductors are assumed

to conform with the Cartesian coordinates and all conductor

surfaces sb are divided into a set of Nh contiguous cells of

area .S~. Therefore,

q’ =
k=l Sk

Use is made of the mean value theorem [21 ] to remove

the charge density from under the integral sign:

s
G(F;, ~’)q(~’) ds’ = q(;j)

s
G(?,, F’) ds’. (3)

sj s

The vector ~j is located somewhere on the jth cell and

q(zj) is bounded by the smallest and largest value of the charge

density on the cell except for the conductor edge, where g is

infinite. Equation (1) is rewritten using (3) as

K Nb

O(7J = ~ ~ q(.$j)
s

G(?;, i’) ds’. (4)
k-l j=l s.

For the usual subarea method or collocation solution (e.g.,

[IO]), the potential vector is matched to the known potential

at the center of all cells in the system and g(~j) is assumed to

be of constant density over cell ~. Thus both potential and

charge density are approximated in the collocation approach.

If, however, (4) is integrated over cell i and q(~j) is as-

sumed to be a constant cell density, a solution by Galerkin’s

method results [22 ]. The left-hand side is then @& since all

cells are equipotential surfaces, where TJ; is the cell potential

and Si is its area. Hence, for the new solution, (4) is replaced

by

fori=l,2, ..., NT, where NT is the total number of cells in

the system. The solution pursued here corresponds to a vari-

ational solution [12], [23 ].

III. SOLUTION FOR CHARGES

In the collocation solution, the matrix system formed by

(4) (matched at the center of all NT cells) is inverted to obtain

the charge density. Similarly, the charges are found for the

new solution using (5). The approximation of g(~j) by a con-

stant charge density, rather than being represented by the

mean value equation (3), is particularly poor near the sharp

convex corners of the conductors due to the steep slope of the

charge density surface caused by the singularity. Cells de-

creasing in size towards the corners have been used before to

obtain more accurate capacitance values (e. g., [2]). This rep-
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resents an improvement in the constant value approximation

of (3).

The system matrix corresponding to both discrete systems

[(4), (5) ] will become ill-conditioned for a large number of

cells A’T due to the singularity in the charge density. This

problem is even worse if the cell size is decreased towards the

corners. In [13] a new solution is suggested to eliminate this

problem but, as is apparent from Fig. 4, the solution accuracy

is not i reproved by this technique. As an alternate approach

[24], the conditioning of the system matrix is improved_by

solving for the average total charge on the cells Q.i = Sjg(&),

rather than the density, and by decreasing the cell size

towards the corner. For example, for a circular disk [25], the

singularity at the edge is of the form d–llz, where d is a small

distance from the edge. After integration, the total charge on

the edge cell Q is proportional to all/2, which is zero in the limit

as G?-N3. If the edge cells are chosen to be smaller than the

center cells, the large elements of the charge density vector

q(~j) are compensated for by a small area .Sj so that a more

uniform total charge vector is obtained. For example, in [3]

it is shown that, at least for a circular disk, a sinusoidal cell

distribution leads to constant total charge on all cells. The

system of equations (5) is rewritten in terms of total charge as

k=l j=l

where

(6a)

1
psij & —

Ss
G(P, ?’) ds’ds (6b)

SdSj S% sj

fori=l,2, ..., NT. Equation (6) 1 forms a system of sym-

metric algebraic equations that is solved for the charges Qsj.

It i:; proposed that for the three-dimensional solutions only

one cell along the sharp corners be decreased in width, since

the total number of cells per conductor must necessarily be

few. Further, for closely spaced conductors, the coupling ca-

pacitance depends on the center cell charge as well as the

corner distribution, and thus the center of the conductor sur-

faces cannot be depleted of cells. An edge cell of 0.1 times the

width of the uniform center cells leads to accurate results for

both the infinitely thin plate and the cube. This is illustrated

in Fig. 1 for the infinitely thin plate. The upper-bound solu-

ion [26] in Fig. 1 is conservative for the thin plate. It is

I It was pointed out by a reviewer that this expression coincides with
Sylvester’s potential averaging approximation [7].
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noted that the Galerkin solution satisfies the conditions of

Thomson’s theorem [8], andthus thesolutions obtained rep-

resent lower bounds onthecapactiance [2].

It has been stated above that the conditioning of the sys-

tem matrix is improved by solving (6) for the total charges

with a decrease in the edge cell size. The magnitude of the

total charge on the cells along the diagonal is shown in Fig. 2

for a thin plate with seven cells per side. The most uniform

cell charge is obtained with an edge cell of 0.4, while the best

capacitance is obtained for an edge cell of 0.1 Fig. (1). A good

criterion for the conditioning of a matrix is given by the con-

dition number [27] as cond (A)= [h(A) I max/1 A(A)\ rein,

where X(A) represents an eigenvalue of the matrix A. In some

of the experiments given, the condition number was monitored

and found to be small; thus the corresponding matrices are

well conditioned. For the case in Fig. 2 and an edge cell size of

less than 0.4, an increase is found, as expected. For example,

for the thin plate with seven cells per side, cond (@s)= 21 for

an edge cell of 0.4, while for 0.1, cond (Ps) = 30. It is easy to

see that both the capacitance improvement and the condition-

ing improvement by the edge cells has a maximum, since the

total charge on very narrow edge cells is insignificantly small

with a small contribution to the capacitance.

IV. COEFFICIENT MATRIX

It is noted by inspection of (6b) that the coefficient matrix

for the new solution is symmetric. Further, (6a) can be written

in matrix form as

CPS = $s Qs (7)

where 0s is the vector of cell potentials and Qs represents the

total cell charge. The @s-matrix can be viewed as the matrix of

coefficients of potential for the subdivided system. The inverse

of the @-matrix PS–l Qcs is most efficiently computed by

Choleski’s method [28], which also requires the least amount

of storage [only 0.5iV~(N~+ 1) words]. It is shown that the

@s-matrix is positive definite, as required for Choleski’s

method. The energy needed to assemble the charges in the sys-

tem, corresponding to (7), is positive independent of the par-

ticular choice of the nonzero charges Q. However, the energy

can be written as a quadratic form We= 0.5 QTps Q, which

proves that @ is a positive definite matrix.

A closed-form answer can be found for the coefficients of

the @-matrix with minor changes from a formulation for in-

ductance calculations [29 ], which provides coefficients for

both parallel and perpendicular cells. The coefficients are

given in the Appendix in a general form such that all relative

locations are considered. Evaluation of the coefficients in sub-

routine form takes an average of 2 ms on an IBM 360/91

computer programmed in double-precision Fortran. A point

source law given by GD [(2)] is used to approximate both

coefficients [(15), (16) ]. A comparison between the exact

coefficients and GD is given in Fig. 3 for all relative locations of

importance, where the relative error E is defined as

100 I ~sii – GD I
E= (8)

psi,

A relative distance R between the cell centers of R >2 for the

use of the approximation ~s~j = GD suffices for many cases,

since only a few cells in any given geometry will be located at

exactly this distance. The computation of GD takes only

50 ps on an IBM 360/91 computer, including the decision

tests. Thus the gain in computation time is about 40. The time

to compute the @-matrix will especially be reduced for multi-

body problems and for problems with a large number of small

cells, since the condition R >2 is satisfied for most of the cells.

It is interesting to note some properties of the @s-matrix.

For a K conductor system, K square submatrices along the

diagonal correspond to the cells on the conductors themselves,

while all off-diagonal submatrices correspond to conductor-

to-conductor coupling. Conductors can be added or deleted

by simply adding or deleting the appropriate submatrices to

the @s-matrix, without recomputation of the entire matrix.

The matrices resulting from the I E method are full and little

sparsity can be gained by setting small elements to zero. In

fact, systems with small nonimportant intercoupling should

be partitioned into a set of smaller problems wherever pos-

sible.

V. GREEN’S FUNCTIONS

Different dielectric regions and ground planes are included

in the formulation by appropriate Green’s functions. It is not

the purpose of the present paper to give a complete list of

Green’s functions, since many results already are available in

the literature [.5 ]– [7 ], [16], [17] for a multitude of cases.

Three-dimensional Green’s functions are obtained from the

same set of images as the corresponding two-dimensional

cases. Since most of the Green’s functions can be found from



RUEHLIAND BRENNAN: THREE-DIMENSIONAL MULTICONDUCTOR SYSTEMS 79

image solutions, they are generalized as

(9)
n

where an is an appropriate constant coefficient and GDn indi-

cates the location of the tzth image. For a single dielectric or

conducting interface, the summation has only two terms, and

thus the time required to compute the ~sn-matrix will increase

by less than a factor of two. An interesting result is obtained

for very thin conductors located on a dielectric half space with

permittivity .s.. Since the images coincide almost with the

conductors, the dielectric is taken into account by a new

dielectric constant ea. = 0.5 (eo+sJ. Thus the dielectric is

easily included in the free-space solution without increasing

the computation time.

If, for geometries requiring infinitely many images, G

given by (9) converges uniformly, integration and summation

can be interchanged in (6 b). Then, the new elements of the

ps-matrix are given by

(lo)
n

where again the subscript n indicates the appropriate location

for the image coefficient @s$j. For practical calculations, only a

small number of terms is included in the series. The conver-

gence of the series depends strongly on the grouping of the

terms. Kittel [30] gives a general rule for the improvement of

convergence for the calculation of the Madelung constant by

grouping the terms into electrically neutral entities. This

technique is applied to the case where conductors are bounded

by two conducting planes, since convergence is slower for this

case than for dielectric interfaces where the image strength

decreases with increasing z. If groups of four images are

formed, the coefficients are

~T, g {(P~i,),.t-z,-2 (n-l)Hl - (P~t,)[zt+z,+2(z-l)HlPSi~ = A
n

+ (Psii) [.i–, +ZnFI] – (p~i~) [z,+, –2nH I } (11)

where N is the number of image quadruples included. One of

the infinite ground planes is located at z = O, while the second

ground plane is at z =lY.

The distance of the nth image quadruple from z ==O is ap-

proximately I z] = 2nH, which increases rapidly with n. Thus

approximate coefficients can be used for distant images. The

approximate error term e, for the truncated series is found by

integration over the remainder of the series analogous to the

integral test for convergence. A closed form for e, is found for

~r,e,=~ln [A2+(A2’+u’)’/2][A,+ (A,’+ 2P)’/’]
2H [A1+(A1~+@l/~] [A3+(.432+tL2)l/’]

Here, the following definitions are used:

Z~2= (xi – *J)’ + (Yt – Yj)’

Al= IZ, –Z, –2(N-+)B[

A2=]Z, +Z, +2(N–+)H]

A,= IZ, –Z, +2( N+*)HI

Al=l Z~+Zj–2(N+*)Efl

(12a)

(12b)

The error e, can be used as a criterion to find the maximum

number of terms in the series of (11). A more convenient heu-

ristic formula can be obtained suitable for an a priori estimate

of N. If the contribution of the remaining terms is to be small,

2NiY must be larger than zz in (12 b). Thus the number of

terms irl the series is estimated by N= KI+K2zJ/H< N&x.

All constants depend on the range of problems and the desired

solution accuracy. The number of terms N is limited by N~~

to save computation time for long conductors between closely

J are extremely smallspaced planes, since the coefficients #si$

for cells spaced by a large u. In all computations conducted,

J. An exampleall coefficients are improved by adding e~ to @,J

for the application of this scheme and for the constants is

given in Section VII. Again, for the situation of multiple

dielectric interfaces, less terms must be included in the series,

since the strength of the nth image a,z decreases with increas-

ing z= 2iIaH.

VI. RELATION TO MULTICAPACITANCES

All the different capacitance matrices of interest are avail-

able fro m the coefficients of capacitance [31], which are

obtained from the subcoefficients after solution of (7) as

Qs = CS@S (13)

where cs = Ps–l is called the matrix of subcoefficients of capac-

itance. The coefficients of capacitance matrix c are easily

found from

(14)
Z=l m=l

where, in general, It= 1~ = 1 for cells on conductors 1 and m,

respectively, and lZ = lm = O for cells not on the respective

conductclrs.

Next, the coefficients of partial capacitance matrix co are

considered. They represent coefficients in an environment

where thl: conductor surfaces are partitioned into an appropri-

ate set of “partial” conductor surfaces that can assume differ-

ent potentials. Again, they find use in high-frequency equiv-

alent circuit models [20]. Coefficients of partial capacitance

are given by [(14)] except 12= 1~= 1 for the cell on thejth and

mth ~artial surface only. Both the capacitance matrix C and,

equivalently, the matrix of partial capacitances CP are found

by well-known relations [31].

VII. RESULTS AND COMPARISON

It is 6 rst noted that all answers given below can be scaled

for different dimensional units by multiplication of the C-

matrix by the linear conversion factor to meters. Such a con-

version is desirable in a computer program, since small dimen-

sional numbers that can cause roundoff errors are avoided.

An infinitely thin square plate is the nontrivial three-

dimensional capacitance problem considered most often, and it

therefore serves as a yardstick for a comparison of solution

methods. In Fig. 4 all solutions known to the authors are com-

pared. The first solution due to Maxwell [9] of 40.13 pF was

obtained by using the symmetry of the structure and modi-

fied corner coefficients such that the results could be computed

for six cells per side without a computer. Collocation solutions

have been obtained by many authors [1o]– [14]. Here, the col-

location !Solution is extended to 30 cells by using physical

symmetry; the capacitance for this case is 40.35 pF. For the
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Galerkin solution presented here, 40.38 pF is obtained with

only 20 uniform cells ~er side. Further. a substantial improve-

ment is obtained if the nonuniform edge scheme is imple-

mented. The capacitance for this case is 40.54 pF for only

seven cells per side with an edge cell of 0.1. Use is not made of

the physical symmetry in the new results given, since the

complex structures to which this formulation addresses itself

do not necessarily possess such symmetries. However, the

symmetric matrices are solved by Choleski’s method (Section

IV). “

The upper- and lower-bound solutions for the cube (Fig.

5) are almost a factor of two better than those obtained for the

sauare date in Fig. 4. It is noted that for this case. the new. .
solution with nonuniform edge cells is only a weak function of

the number of cells indicating convergence. Also, the capac-

itance obtained with eight uniform cells per side (73.27 pF)

is less than that of the answer for three cells per side with an

edge cell of 0.1 (73.35 pF). For a cube with three cells per side,

the computation time on an IBM 360/91 computer is 2.5 s for

setting up the matrix coefficients and 0.14 s for matrix inver-

sion, where R >2 is used for the approximate coefficients. For

six cells per side, the matrix is set up in 20 s while matrix in-

version takes 7.6 s. It, can easily be shown that no improve-

ment in capacitance is gained by increasing the cells per side

from one to two in the Galerkin solution. This is indicated in

both Figs. 4 and 5. Comparisons with the two-dimensional

solutions are made to show the effect of a finite length on

capacitance. Three transmission lines above a common ground

plane shown in Table I are considered (where all distances are

in millimeters). All sides are divided into three cells in this

solution. Table I shows a comparison between the new solu-

tion and the two-dimensional solution due to Weeks [6]. For

the shorter line length (length/width = 10), the three-dimen-

sional solution clearly shows the differences in the coefficients

of capacitance per unit length.

A problem considered by Kammler [3] with a known an-

swer for an infinite length is used as an illustration for the two-

ground plane solution. The structure consists of an infinitely

thin conductor of width 0.6 m centered between two plates

spaced at 1 m with an exact capacitance of 368.1 pF. In the

three-dimensional solution, the center conductor of a length

of 10 m is divided into three cells along the width and six

cells along its length. A capacitance of 373.7 pF is obtained

with the formulation for the Green’s function of Section V,

where specifically K1 = 6, K2 = 10, and Nm~ = 50. For this

solution the relative distance chosen for the approximate

coefficients in Fig. 3 is R >30, since an increased accuracy is

required for the almost equal coefficients in (11).

The use of the solution presented is greatly facilitated for

generalized computations if the appropriate number of cells

is assigned automatically to the conductors. Specifically, a

heuristic algorithm has been derived, which assigns cells by

taking the relative length and width of the conductors into

account. However, the number of cells per side should at least

be three on all conductors for accurate solutions.

APFENt~IX

The relative cell positions of interest can be narrowed down

to the two general cases shown in Figs. 6 and 7. The coefficient

[(6b)] for the relative cell location shown in Fig. 6 is

(15)

where

P = (a~” -1- b~2 + c’) 112

and

j. ‘a
al=a~j ——— —

22

~. ‘a
a2=a~~+———

22

f.
a3=ajj+--+~
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TABLE I

COMPARISONOF TWO-DIMENSIONAL AN’DTHREE-DIMENSIONAL SOLUTIONS

81

Capacitance
Coefficient

% = C33

Clz = C23

C22

C13

‘rwo Dimensional ] Three di,fiensional Galerkin S.lution
Solution Due to Weeks

j

Six cells alon

5 ma~ching points lside length /w Ldth = 1000

0.286 (3.,297

- 0.0560 - 0.059

0.299

I

0.31

- 0.0083 - 0.0084

The capacitances are m pF end are “armalized to a length of 1 cm.

Fig. 6. Cells oriented in parallel.

Fig. 7. Cells oriented perpendicular to each other.

Similarly, for perpendicular cells, with the notation indi-

length
len,e,thlwidth = 10

0.325

- 0.054

0.335

- 0.0077

cated in Fig. 7 the coefficient is

1 42

“[(+-%’n’bm+”
‘(wabm’n(’’+p’
+akbmct In (ak + p) – *p

aks bmcl
~ tan-l——

(–) akp

bm2ak
——

()

tan–~ ~

2 bmp

akc12 ( )1
akb~

z tan–l ——— (16)
cl’

where p and ak are defined as above and additionally

bl=b;j+;

bz=bil–$

f,
cl=cij+—

2

f.
Cz = C~i _—.

2

Both (15) and (16) are easily implemented in subroutine form

in a computer program.

and where
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The Variational Treatment of Thick Interacting Inductive Irises

TULLIO E. ROZZI

Abstract—The problem of two thick interacting inductive irises in
waveguide is treated with a variational approach.

Using the appropriate Green’s functions in the continuity equa-
tions of the transverse magnetic fields yields two coupled integral
equations for the magnetic currents on the apertures. Solving one
equation by Fourier expansion and introducing in the remaining
equation, a variational expression for the driving-point admittance is
obtained. Thk is treated with a Rayleigh-Ritz procedure and matrix
methods, avoiding the explicit computation of field amplitudes.

The analysis is carried out in terms of an eigemnode expansion,
as well as in terms of an expansion ~ la Schwinger on the aperture
and the features of the two methods are contrasted.

In spite of its somewhat greater mathematical complexity, the
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latter generally provides a superior solution for a given order of the
trial field.

In both cases the solutions are very accurate, uniformly con-
vergent to their common Mlt value, and require manipulations with
small-order matrices only. The agreement with the experiment is
excellent.

1. INTRODUCTION

T
HE PROBLEM of the inductive iris in waveguide, one

of the geometrically simplest and most commonly used

configurations, admits, nonetheless, no general analyt-

ical solution. On the other hand, the variational approach to

this problem can be developed analytically to such an extent

as to yield answers that can be as accurate as prescribed and,

in the quasistatic limit, can even be cast in closed form.


