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Efficient Capacitance Calculations for Three-Dimensional

Multiconductor Systems

ALBERT E. RUEHLI axp PIERCE A. BRENNAN

Abstract—The design and packaging of integrated circuits re-
quires the calculation of capacitances for three-dimensional con-
ductors located on parallel planes. An integral-equation (IE) com-
puter-solution technique is presented, which provides accurate
results. The solution technique minimizes computer storage require-
ments while maintaining calculating efficiency without excessive
computation times.

I. INTRODUCTION

N THE PAST, integral-equation (IE) techniques found
]:[ extensive use in capacitance calculations for two-dimen-

sional geometries [1]~[7]. These solutions have proven
to be very useful for systems involving sets of long parallel
transmission lines (conductors) in a multidielectric environ-
ment. Further, for sufficiently high frequencies and TEM-
mode propagation, the characteristic impedance can be found
[8]. Thus all electrical parameters required for a complete
characterization of a set of low-loss transmission lines are
obtainable from the IE approach.

Three-dimensional capacitance calculations, however,
have been limited to small problems. The capacitance of an
infinitely thin square plate has been considered by several
authors [9]-[13], while the capacitance between parallel
plates [14] and for a cube has been found [15]. Recently,
solutions have been obtained for problems involving infinite
dielectric regions [16]-[18] by using Green’s function tech-
niques similar to those used in the two-dimensional calcula-
tions cited above.

The numerical solution of the IE leads to a matrix that
resembles the coefficients of potential for multiconductors. In
a two-dimensional analysis, the unknowns represent the sur-
face charge (on the boundary of a cross section), and are
therefore one dimensional. Approximately 30 unknowns lead
to a good solution for an average problem on a small computer
since the matrix requires only 900 words of storage.
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In contrast to this, the unknowns representing the surface
charge will be two dimensional when the IE approach is
applied to a three-dimensional capacitance problem. If the
above example is extended to this case, matrices larger than
1000 <1000 result, requiring excessive storage for a direct
matrix inversion. This presents a serious limitation to three-
dimensional calculations especially since the matrices are full.
The solutions introduced here considerably reduce storage
requirements for the matrix of coefficients without unduly
increasing computation complexity, allowing the treatment of
three-dimensional conductors on multiple planes.

In some situations, the presence of closely spaced ground
planes makes a two-dimensional description [1]-[7] possible,
and thus a transmission-line characterization suffices. How-
ever, if ground planes are remote or not present, three-dimen-
sional solutions become necessary. Specifically, the use of par-
tial capacitances (defined later) in conjunction with partial
inductances [19] leads to a three-dimensional technique, and
partial-element equivalent circuits [20] result in a complete
characterization of three-dimensional interconnection struc-
tures.

In Section II, the formulation of the IE solution is devel-
oped, while Section III is devoted to the numerical solution.
In Section IV, the evaluation of the coefficient matrix is con-
sidered, and in Section V, Green’s functions for the inclusion
of infinite interfaces are considered. Important relations to
multicapacitance concepts are established in Section VI, while
comparisons with other results are made in Section VII.

II. INTEGRAL-EQUATION FORMULATION

A set of K conductors is considered with or without infinite
ground planes or with infinite dielectric regions present. The
potential ®(7;) at a field point #; in the system is

o) = 2 [ 6o #)(7) as 1)

where g is the charge density on the conductor surfaces s; and
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G is the appropriate Green’s function for the infinite interfaces
present. For a uniform infinite dielectric region surrounding
the conductors, G=Gp where

1 1
Gp = — )

4re Ih—i"|

€is the permittivity, and #’ is the vector from the origin to the
source point. In this paper, all results are obtained with
1/4meo=0.0089876 pF/m, with € being the permittivity of
air. Equations (1) and (2) represent a system of Fredholm
equations of the first kind with an integrable singular kernel
G.

For simplicity, the surfaces of the conductors are assumed
to conform with the Cartesian coordinates and all conductor
surfaces s, are divided into a set of N; contiguous cells of
area S;. Therefore,

K K Ng
=1V sy k=l =1V §,
Use is made of the mean value theorem [21] to remove
the charge density from under the integral sign:

6o 7)) d = 4@ [ 6,78 @)
8; 8

The vector §; is located somewhere on the jth cell and
¢(%;) is bounded by the smallest and largest value of the charge
density on the cell except for the conductor edge, where g is
infinite. Equation (1) is rewritten using (3) as

K Ng

2 - X206 [ Grar)a. @

k=1 j=1

For the usual subarea method or collocation solution (e.g.,
[10]), the potential vector is matched to the known potential
at the center of all cells in the system and g(éj) is assumed to
be of constant density over cell 7. Thus both potential and
charge density are approximated in the collocation approach.

If, however, (4) is integrated over cell ¢ and ¢(§;) is as-
sumed to be a constant cell density, a solution by Galerkin’s
method results [22]. The left-hand side is then ®;S; since all
cells are equipotential surfaces, where ®; is the cell potential
and S; is its area. Hence, for the new solution, (4) is replaced
by

K Ng ~ 1
&= 2.2 9¢) - f G(#,#) ds'ds (5)
k=1 =1 Sid 5, J 3,
fori=1, 2, - - -, Np, where Ny is the total number of cells in

the system. The solution pursued here corresponds to a vari-
ational solution [12], [23].

II1. SoLuTioN FOR CHARGES

In the collocation solution, the matrix system formed by
(4) (matched at the center of all Ny cells) is inverted to obtain
the charge density. Similarly, the charges are found for the
new solution using (5). The approximation of ¢(£;) by a con-
stant charge density, rather than being represented by the
mean value equation (3), is particularly poor near the sharp
convex corners of the conductors due to the steep slope of the
charge density surface caused by the singularity. Cells de-
creasing in size towards the corners have been used before to
obtain more accurate capacitance values (e.g., [2]). This rep-
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resents an improvement in the constant value approximation
of (3).

The system matrix corresponding to both discrete systems
[(4), (3)] will become ill-conditioned for a large number of
cells Ny due to the singularity in the charge density. This
problem is even worse if the cell size is decreased towards the
corners. In [13] a new solution is suggested to eliminate this
problem but, as is apparent from Fig. 4, the solution accuracy
is not improved by this technique. As an alternate approach
[24], the conditioning of the system matrix is improved by
solving for the average total charge on the cells Qy;=.S;g(§;),
rather than the density, and by decreasing the cell size
towards the corner. For example, for a circular disk [25], the
singularity at the edge is of the form d=¥2, where d is a small
distance from the edge. After integration, the total charge on
the edge cell Q is proportional to dV/2, which is zero in the limit
as d—0. If the edge cells are chosen to be smaller than the
center cells, the large elements of the charge density vector
g(%;) are compensated for by a small area S; so that a more
uniform total charge vector is obtained. For example, in [3]
it is shown that, at least for a circular disk, a sinusoidal cell
distribution leads to constant total charge on all cells. The
system of equations (5) is rewritten in terms of total charge as

K N

&= D 2 psuQsi (6a)
E=1 j=1
where
Psi; & L f G(#, #) ds'ds (6b)
TSsS Ve Y sy
for ¢=1, 2, - - -, Np. Equation (6)! forms a system of sym-

metric algebraic equations that is solved for the charges Qs;.

Itis proposed that for the three-dimensional solutions only
one cell along the sharp corners be decreased in width, since
the total number of cells per conductor must necessarily be
few. Further, for closely spaced conductors, the coupling ca-
pacitance depends on the center cell charge as well as the
corner distribution, and thus the center of the conductor sur-
faces cannot be depleted of cells. An edge cell of 0.1 times the
width of the uniform center cells leads to accurate results for
both the infinitely thin plate and the cube. This is illustrated
in Fig. 1 for the infinitely thin plate. The upper-bound solu-
ion [26] in Fig. 1 is conservative for the thin plate. It is

1 It was pointed out by a reviewer that this expression coincides with
Sylvester's potential averaging approximation [7].
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Fig. 2. Cell charges with respect to edge cell size for plate.

noted that the Galerkin solution satisfies the conditions of
Thomson’s theorem [8], and thus the solutions obtained rep-
resent lower bounds on the capactiance [2].

It has been stated above that the conditioning of the sys-
tem matrix is improved by solving (6) for the total charges
with a decrease in the edge cell size. The magnitude of the
total charge on the cells along the diagonal is shown in Fig. 2
for a thin plate with seven cells per side. The most uniform
cell charge is obtained with an edge cell of 0.4, while the best
capacitance is obtained for an edge cell of 0.1 Fig. (1). A good
criterion for the conditioning of a matrix is given by the con-
dition number [27] as cond (4)=|A(4)| max/|\(4)| min,
where A(4) represents an eigenvalue of the matrix 4. In some
of the experiments given, the condition number was monitored
and found to be small; thus the corresponding matrices are
well conditioned. For the case in Fig. 2 and an edge cell size of
less than 0.4, an increase is found, as expected. For example,
for the thin plate with seven cells per side, cond (ps) =21 for
an edge cell of 0.4, while for 0.1, cond (ps) =30. It is easy to
see that both the capacitance improvement and the condition-
ing improvement by the edge cells has a maximum, since the
total charge on very narrow edge cells is insignificantly small
with a small contribution to the capacitance.

IV. COEFFICIENT MATRIX

Itis noted by inspection of (6b) that the coefficient matrix
for the new solution is symmetric. Further, (6a) can be written
in matrix form as

®s = psQs (7

where ®s is the vector of cell potentials and Qs represents the
total cell charge. The ps-matrix can be viewed as the matrix of
coefficients of potential for the subdivided system. Theinverse
of the ps-matrix ps—tAcs is most efficiently computed by
Choleski’s method [28], which also requires the least amount
of storage [only 0.5Nz(Np-41) words]. It is shown that the
ps-matrix is positive definite, as required for Choleski's
method. The energy needed to assemble the chargesin the sys-
tem, corresponding to (7), is positive independent of the par-
ticular choice of the nonzero charges Q. However, the energy
can be written as a quadratic form W,=0.5QT7psQ, which
proves that ps is a positive definite matrix.

A closed-form answer can be found for the coefficients of
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the ps-matrix with minor changes from a formulation for in-
ductance calculations [29], which provides coefficients for
both parallel and perpendicular cells. The coefficients are
given in the Appendix in a general form such that all relative
locations are considered. Evaluation of the coefficients in sub-
routine form takes an average of 2 ms on an IBM 360/91
computer programmed in double-precision Fortran. A point
source law given by Gp [(2)] is used to approximate both
coefficients [(15), (16)]. A comparison between the exact
coefficients and Gp is given in Fig. 3 for all relative locations of
importance, where the relative error E is defined as

5 100| psii — Go| '
Psi;

A relative distance R between the cell centers of R>2 for the
use of the approximation ps,;;=Gp suffices for many cases,
since only a few cells in any given geometry will be located at
exactly this distance. The computation of Gp takes only
50 us on an IBM 360/91 computer, including the decision
tests. Thus the gain in computation time is about 40. The time
to compute the ps-matrix will especially be reduced for multi-
body problems and for problems with a large number of small
cells, since the condition R>>2 is satisfied for most of the cells.

It is interesting to note some properties of the ps-matrix.
For a K conductor system, K square submatrices along the
diagonal correspond to the cells on the conductors themselves,
while all off-diagonal submatrices correspond to conductot-
to-conductor coupling. Conductors can be added or deleted
by simply adding or deleting the appropriate submatrices to
the ps-matrix, without recomputation of the entire matrix.
The matrices resulting from the IE method are full and little
sparsity can be gained by setting small elements to zero. In
fact, systems with small nonimportant intercoupling should
be partitioned into a set of smaller problems wherever pos-
sible.

©)

V. GrEEN’S FUNCTIONS

Different dielectric regions and ground planes are included
in the formulation by appropriate Green’s functions. It is not
the purpose of the present paper to give a complete list of
Green’s functions, since many results already are available in
the literature [5]-[7], [16], [17] for a multitude of cases.
Three-dimensional Green's functions are obtained from the
same set of images as the corresponding two-dimensional
cases. Since most of the Green’s functions can be found from
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image solutions, they are generalized as
G = Z OlnGDn (9)
n

where o, is an appropriate constant coefficient and Gp, indi-
cates the location of the #th image. For a single dielectric or
conducting interface, the summation has only two terms, and
thus the time required to compute the ps,-matrix will increase
by less than a factor of two. An interesting result is obtained
for very thin conductors located on a dielectric half space with
permittivity e;,. Since the images coincide almost with the
conductors, the dielectric is taken into account by a new
dielectric constant €;,,=0.5(e0+¢,). Thus the dielectric is
easily included in the free-space solution without increasing
the computation time.

If, for geometries requiring infinitely many images, G
given by (9) converges uniformly, integration and summation
can be interchanged in (6b). Then, the new elements of the
ps-matrix are given by

psif = 2 an(psidn

n

(10)

where again the subscript # indicates the appropriate location
for the image coefficient ps,;. For practical calculations, only a
small number of terms is included in the series. The conver-
gence of the series depends strongly on the grouping of the
terms. Kittel [30] gives a general rule for the improvement of
convergence for the calculation of the Madelung constant by
grouping the terms into electrically neutral entities. This
technique is applied to the case where conductors are bounded
by two conducting planes, since convergence is slower for this
case than for dielectric interfaces where the image strength
decreases with increasing z. If groups of four images are
formed, the coefficients are

1 X
PSiJI = — Z {(Psu) [z,—2j—2(n—1)H] ~— (Pszj) 24242 (r—1)H]

Are ey
(11)

where N is the number of image quadrupoles included. One of
the infinite ground planes is located at =0, while the second
ground plane is at z=H.

The distance of the nth image quadrupole from z=01is ap-
proximately ]z] =2nH, which increases rapidly with #. Thus
approximate coefficients can be used for distant images. The
approximate error term e, for the truncated series is found by
integration over the remainder of the series analogous to the
integral test for convergence. A closed form for ¢, is found for
(psij)n=_GCp, as

1, [Ast (Ao +u2) 2] [ At (A2 +u2) 2]

+ (5i) teimsrommy — (PSi) tze —omi1 1}

4dree,=——1In - (12a)
2 [ Ayt (A2412) 2] [ As+ (A2 Hu?) 2]
Here, the following definitions are used:
w = (0 — ) + (yi — y))*
Ay = |z;— 2, — 2N — HH|
A= |zi+z + 2V — DH|
A= |2i— 2+ 2N+ DH|
As=|zi4z— 2N+ HH]. (12b)
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The error e, can be used as a criterion to find the maximum
number of terms in the series of (11). A more convenient heu-
ristic formula can be obtained suitable for an a priori estimate
of N. If the contribution of the remaining terms is to be small,
2NH must be larger than # in (12b). Thus the number of
terms in the series is estimated by N=Ki+Kou/H< Npax.
All constants depend on the range of problems and the desired
solution accuracy. The number of terms N is limited by Nmax
to save computation time for long conductors between closely
spaced planes, since the coefficients ps;;! are extremely small
for cells spaced by a large ». In all computations conducted,
all coefficients are improved by adding e, to ps;7. An example
for the application of this scheme and for the constants is
given in Section VII. Again, for the situation of multiple
dielectric interfaces, less terms must be included in the series,
since the strength of the nth image a,, decreases with increas-
ing z=2unH.

VI. RELATION TO MULTICAPACITANCES

All the different capacitance matrices of interest are avail-
able from the coefficients of capacitance [31], which are
obtained from the subcoefficients after solution of (7) as

(13)

where ¢s= ps—!is called the matrix of subcoefficients of capac-
itance. The coefficients of capacitance matrix ¢ are easily
found from

Qs = ¢cs®s

Nt NT

Cim = Z Z Cslmlllm

=1 m=1

(14)

where, in general, 1;=1,,=1 for cells on conductors / and m,
respectively, and 1;=1,=0 for cells not on the respective
conductors.

Next, the coefficients of partial capacitance matrix cp are
considered. They represent coefficients in an environment
where the conductor surfaces are partitioned into an appropri-
ate set of “partial” conductor surfaces that can assume differ-
ent potentials. Again, they find use in high-frequency equiv-
alent circuit models [20]. Coefficients of partial capacitance
are given by [(14) ] except 1;= 1,,=1 for the cell on the jth and
mth partial surface only. Both the capacitance matrix C and,
equivalently, the matrix of partial capacitances C, are found
by well-known relations [31].

VII. REsuLTs AND COMPARISON

It is first noted that all answers given below can be scaled
for different dimensional units by multiplication of the C-
matrix by the linear conversion factor to meters. Such a con-
version is desirable in a computer program, since small dimen-
sional numbers that can cause roundoff errors are avoided.

An infinitely thin square plate is the nontrivial three-
dimensional capacitance problem considered most often, and it
therefore serves as a yardstick for a comparison of solution
methods. In Fig, 4 all solutions known to the authors are com-
pared. The first solution due to Maxwell [9] of 40.13 pF was
obtained by using the symmetry of the structure and modi-
fied corner coefficients such that the results could be computed
for six cells per side without a computer. Collocation solutions
have been obtained by many authors [10]-[14]. Here, the col-
location solution is extended to 30 cells by using physical
symmetry; the capacitance for this case is 40.35 pF. For the
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Galerkin solution presented here, 40.38 pF is obtained with
only 20 uniform cells per side. Further, a substantial improve-
ment is obtained if the nonuniform edge scheme is imple-
mented. The capacitance for this case is 40.54 pF for only
seven cells per side with an edge cell of 0.1. Use is not made of
the physical symmetry in the new results given, since the
complex structures to which this formulation addresses itself
do not necessarily possess such symmetries. However, the
symmetric matrices are solved by Choleski’s method (Section
1v). )

The upper- and lower-bound solutions for the cube (Fig.
§) are almost a factor of two better than those obtained for the
square plate in Fig. 4. It is noted that for this case, the new
solution with nonuniform edge cells is only a weak function of
the number of cells indicating convergence. Also, the capac-
itance obtained with eight uniform cells per side (73.27 pF)
is less than that of the answer for three cells per side with an
edge cell of 0.1 (73.35 pF). For a cube with three cells per side,
the computation time on an IBM 360/91 computer is 2.5 s for
setting up the matrix coefficients and 0.14 s for maitrix inver-
sion, where R>2 is used for the approximate coefficients. For
six cells per side, the matrix is set up in 20 s while matrix in-
version takes 7.6 s. It can easily be shown that no improve-

ment in capacitance is gained by increasing the cells per side
from one to two in the Galerkin solution. This is indicated in
both Figs. 4 and 5. Comparisons with the two-dimensional
solutions are made to show the effect of a finite length on
capacitance. Three transmission lines above a common ground
plane shown in Table I are considered (where all distances are
in millimeters). All sides are divided into three cells in this
solution. Table I shows a comparison between the new solu-
tion and the two-dimensional solution due to Weeks [6]. For
the shorter line length (length/width=10), the three-dimen-
sional solution clearly shows the differences in the coefficients
of capacitance per unit length.

A problem considered by Kammler [3] with a known an-
swer for an infinite length is used as an illustration for the two-
ground plane solution. The structure consists of an infinitely
thin conductor of width 0.6 m centered between two plates
spaced at 1 m with an exact capacitance of 368.1 pF. In the
three-dimensional solution, the center conductor of a length
of 10 m is divided into three cells along the width and six
cells along its length. A capacitance of 373.7 pF is obtained
with the formulation for the Green’s function of Section V,
where specifically K1=6, Ky=10, and Npax=350. For this
solution the relative distance chosen for the approximate
coefficients in Fig. 3 is R>30, since an increased accuracy is
required for the almost equal coefficients in (11).

The use of the solution presented is greatly facilitated for
generalized computations if the appropriate number of cells
is assigned automatically to the conductors. Specifically, a
heuristic algorithm has been derived, which assigns cells by
taking the relative length and width of the conductors into
account. However, the number of cells per side should at least
be three on all conductors for accurate solutions.

APPENDIX

The relative cell positions of interest can be narrowed down
to the two general cases shown in Figs. 6 and 7. The coefficient
[(6b)] for the relative cell location shown in Fig. 6 is

1 4 4 bm2 . C2
dmepsyy = ———— 2 D (—1)“'“[“—2—— ax In (ax + p)

f abeaSb k=1 m=1

a? — C? 1
+———2—bm In (b + p) ~ g (bn2 — 2C + axd)p
dkbm
— b,Ca;, tan™? jl (15)
oC
where
p = (a? + b2 + C2)U2
and
Jo  Sa
ma= =y
Ja S
a = a;; + ? - —2‘
fo o Se
o = @+ 5 + EY
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TABLE I
COMPARISON OF Two-DIMENSIONAL AND THREE-DIMENSIONAL SOLUTIONS

Two Dimensional Three dimensional Galerkin Solution

Capacitance Solution Due to Weeks Six cells along length

Coefficient 5 matching points/side length/width = 1000 | length/width = 10

= 2

C11 C33 0.286 0.297 0.325

C12 = c23 ~ 0.0560 - 0,059 - 0.054"

Cyy 0.299 0.31 0.335

C13 - 0.0083 - 0.0084 - 0.0077

| —_

The capacitances are in pF and are normalized to a length of 1 em.

r‘?%l' ===

Fig. 6. Cells oriented in parallel.

Z { Sa / a

Fig. 7. Cells oriented perpendicular to each other.

fo o Sa

d4=d¢j"—2“+?
fb Sb
by Ty
s

b= by + 12
2 2

T 5
b3—bij+_2‘+—2_
fb Sb

by = by — o=
e= byt

Similarly, for perpendicular cells, with the notation indi-

cated in Fig. 7 the coefficient is

4

2 2
drepsiy = ——— D0 20 30 (—)imen

fafcsasb k=1 m=1 l=1

W N In (b +
-[(2——g>61n(m 0)

@ b
"I"(‘_Z*—?) n n(cl'l"l))

bmcl
+ axbnci In (dk + P) — P

3
ak3 bmcl
— —tan—!
6 axp
b,,,?ak ((Z}J;)
_ tan—l —_—
2 brmp
dk612 dkbm
— tan—!
2 cip

where p and a; are defined as above and additionally

S»
by = by + —2‘
Sp
h=bmy
and where
Je
o= ¢ij + Y
R
2 (7] 2
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(16)

Both (15) and (16) are easily implemented in subroutine form

in a computer program.
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The Variational Treatment of Thick Interacting Inductive Irises

TULLIO E. ROZZI

Abstract—The problem of two thick interacting inductive irises in
waveguide is treated with a variational approach.

Using the appropriate Green’s functions in the continuity equa-
tions of the transverse magnetic fields yields two coupled integral
equations for the magnetic currents on the apertures. Solving one
equation by Fourier expansion and introducing in the remaining
equation, a variational expression for the driving-point admittance is
obtained. This is treated with a Rayleigh~Ritz procedure and matrix
methods, avoiding the explicit computation of field amplitudes.

The analysis is carried out in terms of an eigenmode expansion,
as well as in terms of an expansion a la Schwinger on the aperture
and the features of the two methods are contrasted.

In spite of its somewhat greater mathematical complexity, the
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latter generally provides a superior solution for a given order of the
trial field.

In both cases the solutions are very accurate, uniformly con-
vergent to their common limit value, and require manipulations with
small-order matrices only. The agreement with the experiment is
excellent.

I. INTRODUCTION

HE PROBLEM of the inductive iris in waveguide, one

l of the geometrically simplest and most commonly used

configurations, admits, nonetheless, no general analyt-

ical solution. On the other hand, the variational approach to

this problem can be developed analytically to such an extent

as to yield answers that can be as accurate as prescribed and,
in the qllxasistatic limit, can even be cast in closed form.



